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Abstract
 

Taguchi’s robust parameter design has been 
widely applied to a variety of quality engineering 
problems; however, it is unable to deal with 
dynamic multiresponse owing to the increasing 
complexity of the product or design process. This 
study incorporates desirability functions into a 
hybrid neural network/genetic algorithm approach 
to optimize the parameter design of dynamic 
multiresponses with continuous values of 
parameters. The objective is to find the optimal 
combination of control factors to simultaneously 
maximize the robustness of each response. The 
effectiveness of the propose approach is illustrated 
with a simulated example.  The results of analysis 
reveal that the approach has higher performance 
than the traditional experimental design does. 

 
 

1  Introduction 
 

The Taguchi method is a traditional approach 
for robust experimental design that seeks to obtain 
the best combination of factor/level for the lowest 
societal cost while fulfilling customers’ 
requirements. Over the past decade the Taguchi 
method has been widely applied to optimize the 
parameter design problems, which uses orthogonal 
array (OA) to arrange the experiments and 
employs signal-to-noise ratio (SNR) to evaluate 
the performance of the response of each 
experimental run. Nevertheless, Taguchi’s method 
can only be used to resolve an optimal single 
response problem; it cannot be used to 
simultaneously optimize the multiresponse 
problem [1–4].  Unfortunately, in the real world, 
most customers consider more than one quality 
response problem, while selecting industrial 
products. In addition, the goals of the 
multiresponses often conflict with each other. A 
number of studies primarily focus on a 
multiresponse in a static system for manufactured 
products or processes that have been published 
[5–10]. Since most manufacturing processes are 

naturally dynamic systems, dynamic 
multiresponse problems may frequently be 
encountered in practice [4,11,12]. Hence, the 
parameter design problems containing dynamic 
multiresponses have increasingly received 
attention. Several researchers have begun to study 
this problem [12–15]. 

Considering a dynamic system with multiple 
responses, suppose that there are r output 
responses 1 2( , , ..., )rY y y y�  which are determined 
by a set of control factor combination X  and by 
a set of signal levels 1 2( , ,..., ).sM M M M�  Figure 1 
shows the Parameter Diagram of a dynamic 
system with multiresponse.  The goal of the 
system is to determine the best settings of control 
factors so that the system’s multiresponse have the 
least sensitivities to noise factors along the 
magnitude of the signal factor. 

 

 
Figure 1. The Parameter Diagram of a dynamic 

multiresponse system 
 
A dynamic system with multiresponse can be 

defined as:  
( , )jk jk k jky f M e� �X ,                   (1) 

for j =1,2,…,r;  k = 1,2,…,s. 
where fjk denotes the response function between 
the control factors and the jth response at the kth 
level of signal factor; and ejk is a random error. 

For each dynamic response, it is assumed that a 
linear form exists between the response and the 
signal factor. The ideal function can be expressed 
as y M e�� � , where y denotes the response, M 
stands for the signal factor, �  is the slope or 
system’s sensitivity, and e represents the random 
error [16]. Further, dynamic systems can be 

.
.

.

.SYSTEM

. .

Mulriresponse (Y)

Control factors (X)

Noise factors (Z)

Signal factor (M)

The 24th Workshop on Combinatorial Mathematics and Computation Theory

-340-



www.manaraa.com

classified into dynamic nominal-the-better (DNB), 
dynamic larger-the-better (DLB), and dynamic 
smaller-the-better (DSB) according to the desired 
type of response. Hence, the ideal target function 
is replaced as ty M e�� � , where t�  is the 
desired target slope.  For the response type DNB, 
DLB, and DSB, the value of the slope is 0 t�� � 9 , 

t� � 9 , and 0t� � , respectively. 
In this work, we propose a novel optimization 

approach incorporating desirability functions into 
a hybrid neuron-genetic technique for resolving 
the dynamic multiresponse. The approach 
integrates neural networks (NN), exponential 
desirability functions and a genetic algorithm (GA) 
to model the system’s response function and to 
optimize the parameter design.  Using the 
proposed approach, the obtained optimal 
parameter settings can be any value within their 
upper and lower bounds. 
 
 
2 Desirability Functions, NNs and GAs 

 
For simultaneously optimizing the 

multiresponse problems, the most popular method 
is the exponential desirability function approach 
[17].  The desirability function transforms a 
predicted response to a scale-free value d, called 
desirability.  It is a value between 0 and 1, and it 
increases as the desirability of the corresponding 
response increases.  Many articles have used 
desirability functions to resolve the parameter 
design problems [7, 18].  By using this method, 
multiresponse can be converted into an OPI to 
evaluate a system’s overall performance, which is 
suitable for applying to this study.  

Recent works have discussed applying the 
method of integrating NNs and GAs to optimize 
the parameter settings of engineering designs 
[19-23].  A NN is used to construct the response 
function of a system; a GA is then applied to the 
network for searching the parameter settings with 
an optimal response.  NNs are composed of 
processing elements and connections.  Among 
several networks the supervised learning network 
named back-propagation neural (BPN) is most 
suitable for applying to parameter design because 
its ability of approximating any continuous 
mapping from the input patterns to the output 
patterns.  BPN is a multi-layer network with 
learning ability.  The nonlinear transfer function 
of sigmoid function is used between the 
connections of input layer, hidden layer, and 
output layer.  Each layer is formed by several 
nodes and an additional bias node.  BPN learning 
employs a gradient-descent algorithm to minimize 
the root of mean-square error (RMSE) between 
the target data and the predictions of the neural 

network.  The training data set is initially 
collected to develop a BPN model.  Applying a 
supervised learning rule, the data set is comprised 
of an input and an actual output (target).  The 
gradient-descent learning algorithm enables a 
network to enhance its performance by 
self-learning.  The training of a BPN involves 
three stages: the feedforward of the input training 
data, the calculation and back-propagation of the 
associated error, and the adjustment of the weights.  
While training the network model, the 
performance of the model is sensitive to various 
network structure choices and the parameter 
settings of learning rate and momentum 
coefficient.  A common approach to obtain a 
well-trained network structure is to use the trial 
and error method, i.e., we can train several 
candidate networks that have a different number 
of hidden layers and nodes in each hidden layer, 
and then select the one with the smallest RMSE 
[24]. 

GA starts with an initial set of random solutions 
called a population.  Each individual in the 
population is called a chromosome, representing a 
solution to the problem at hand.  A chromosome 
is a string type, which is organized by a sequence 
of the factors values for the problem.  The 
individual sites on the chromosome where the 
parameter values are stored are called genes.  
The chromosomes evolve through successive 
iterations, called generations. During each 
generation, the chromosomes are evaluated by a 
fitness function.  To create the next generation, 
GA applies a reproduction operator to select the 
candidate chromosomes from the present 
generation.  The fitter chromosomes have a 
higher probability of being selected.  And then, 
GA uses a crossover operator and mutation 
operator to create the offspring.  The process 
continues until a desirable solution is obtained or a 
predetermined generation size is reached [25]. 
 
3  Proposed Approach 

 
The proposed approach consists of three stages.  

First, experimental data are collected to train a 
BPN to represent the response function model of a 
dynamic multiresponse system, fjk, which is 
capable of predicting the corresponding 
multiresponse by giving any factor combinations 
within the feasible solution space.  The second 
stage involves using desirability functions to 
evaluate the performance measures of the 
predicted multiresponse for the three types of 
dynamic systems.  The performance measures 
are then integrated into an OPI value to represent 
the total performance of a specific factor 
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combination.  Finally, a GA is utilized to obtain 
the optimal OPI value and the corresponding 
factor combination.  Figure 2 shows the 
flowchart of the approach. 

 
 

Execute networks training

Collect experimental data

Create initial population of solutions

Obtain a BPN as
 the response function model

Predict multiresponse via
the response function model

Calculate the desirability value of 
each of multiresponse 

as per the quality characteristic

Set parameters of a GA 

             Has the stopping criteria             
 been reached ?

No

Execute the GA to 
obtain the optimal solution

Calculate the OPI value
from desirability values

Predict multiresponse and 
calculate the OPI value

Print the optimal solution

Yes

 
Figure 2.  The proposed approach 

 
3.1   Response Modeling 

This stage uses a BPN to model the response 
function, which builds the relationship function 
between the multiresponse and the parameters of a 
system.  The input data are assigned as the 
control factor values and the signal values; the 
output data are the multiresponse.  A well-trained 
BPN represents the system’s response function 
model, i.e., ˆ ( , )jk jk ky f M� X .  The processes of 

this stage are described as follows:  

Step 1. Collect the training and testing patterns for 
input and output layers from the 
experimental data. 

Step 2. Select several candidates of network 
structures for training. 

Step 3. Set learning rate, momentum coefficient and 
execution iterations L.  

Step 4. For each network structure, Steps 5—8 are 
executed L times. 

Step 5. Initialize randomly weights between layers. 
Step 6. Apply the sigmoid function 1/(1 )xf e�� �  

to predict the outputs. 
Step 7. Calculate the error between the predicted 

output and the target output. 
Step 8. Adjust the weights of the network. 
Step 9. Choose the best one from the several trained 

networks as the system’s response function 
model.  The performance evaluation 
criterion for the network training is the 
RMSE. 

 
3.2   Evaluating the OPI Value 

This works modifies the exponential desirability 
functions introduced by Harrington [10] for 
applying to the dynamic multiresponse system.  
For the three types of dynamic responses, the 
desirability value of each type of the predicted 
multiresponse can be developed as: 
 
D N B : exp( )DNB DNBd Z� � ,          ( 2 ) 

where  
max min

max min
1

ˆ2 ( )1 ;
s

jk jk jkDNB

k jk jk

y y y
Z

s y y�

� �
�

��
 

 
D L B : exp( (exp( )))DLB DLBd Z� � � ,     ( 3 ) 

where  
min

min
1

ˆ1 ;
s

jk jkDLB

k jk

y y
Z

s y�

�
� �  

 
 
D S B :  exp( (1 ))DSB DSBd Z� � � ,        ( 4 ) 

where  
max

max
1

ˆ1 .
s

jk jkDSB

k jk

y y
Z

s y�

�
� �  

 
For Equations (2)—(4), the bounds 

max
jky  and 

min
jky  represent the upper specification limit (USL) 

and lower specification limit (LSL) for the jth 
response at the kth signal level.  To evaluate the 
overall performance of the multiresponse, we can 
formulate the fitness function by integrating the 
multiple desirability values into an OPI value as 
Equation (5): 
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1
,r

r
jj

OPI d
�

� �                      (5) 

where jd  denotes the desirability value for the 
jth response; 1,2,...,j r� . 
 
3.3  Optimizing 

This stage involves performing a GA to 
optimize the OPI value for obtaining the optimal 
multiresponse and the corresponding combination 
values of the control factors from the possible 
solution space.  Herein, a possible solution 
represents a chromosome; an OPI stands for the 
fitness value of the GA.  Genes in the 
chromosome are formed by the values of the 
control factor and the values of the signal factor.  
The parameter bounds and the precision are 
determined according to the characteristics of the 
systems.  The operational steps are given as 
follows: 

 
Step 1. Set population size, crossover rate Pc, and 

mutation rate MP .  Initialize a random 
population of string of size l.  Choose a 
maximum allowable generation number 

maxt .  Set t = 0. 
Step 2. Calculate the predicted multiresponse by 

inputting the control factor values and the 
signal values to the response function 
model fjk, i.e., the trained BPN in Stage 1. 

Step 3. Evaluate the OPI value through 
Equations (2)—(5). 

Step 4. If maxt t(  then terminate. 
Step 5. Perform reproduction on the population. 
Step 6. Perform crossover on pair of string with 

probability Pc. 
Step 7. Perform mutation on strings with 

probability MP . 
Step 8. Evaluate the OPI values of strings in the 

new population.  Set 1t t� �  and go to 
Step 2. 

Step 9. Obtain the optimal combination values of 
control factor and the corresponding 
multiresponse through the response 
function model fjk.  

4  Illustrative Example 
4.1  Description of the Example 

The proposed approach is illustrated with a 
simulated example of a dynamic system 
containing multiresponse.  Suppose there are 
three responses named y1, y2 and y3 to be 
simultaneously optimized.  The quality 
characteristics of the y1, y2 and y3 are DLB, DNB 
and DSB, respectively.  Simulated experimental 
data are obtained based on the Monte Carlo 
simulation and the procedures of Park and Yum 
[26].  Six control factors named A, B, C, D, E and 
F, each at three levels (i.e. level 1, 2, and 3), are 
respectively allocated to columns 3—8 in the 
order as they appear in orthogonal array L18.  The 
signal factor has three levels named M1, M2 and 
M3, the corresponding values are 0.1, 0.2 and 0.3, 
respectively.  The specification limitations of the 
three responses at each signal level are listed in 
Table 1.  Experiments are conducted with two 
replicates at each of the control factor settings.  
The results of the experiments are given in Table 2.  
To evaluate the performance of the multiresponse 
of the experiments, we calculate the desirability 
and the OPI value of each experimental run, which 
are listed in Table 3.  Table 3 shows that the 
repetition 1 of run 3 has the largest OPI = 0.66130 
and the repetition 2 of run 6 has largest OPI = 
0.69863. 

 
4.2  Constructing the Response Function Model 

The response model of the system is 
constructed by a BPN.  This BPN is trained by 
assigning the (control factor values, signal value) 
/multiresponse as the inputs/outputs of the 
network.  For building a well-trained network, 
we randomly select 92 training patterns and 16 
testing patterns from Table 2.  Table 4 lists 
several options of the network architecture; in 
addition, the structure 7-14-3 is selected to obtain 
a better performance.  This study makes use of 
the neural network software package Qnet® 
(http://www.qnetv2k.com). 

 

 

Table 1.  The specifications of the three responses at each signal level 
Responses y1 y2 y3 

Type DLB DNB DSB 
Signal values  0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3 

USL N/A N/A N/A 1.4 2.8 4.2 28 56 84 Bounds 
LSL 4.8 9.6 14.4 0.6 1.2 1.6 N/A N/A N/A 
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Table 2.  The experimental data 
Responses 

No. 
 y1 y2  y3  

M M1 M2 M3 M1 M2 M3 M1 M2 M3 
Rep. 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 7.80 8.13 14.22 14.92 25.96 28.84 0.98 1.09 1.63 1.42 2.79 2.53 15.00 16.56 32.24 41.81 48.25 83.92
2 8.63 7.53 17.01 16.52 27.13 31.76 1.02 1.05 2.22 1.73 3.14 3.44 16.00 16.30 42.91 29.17 57.08 41.51
3 8.12 7.28 16.65 15.84 25.98 26.05 1.05 0.94 2.17 2.15 2.90 2.92 23.00 23.29 40.63 48.37 34.52 57.33
4 8.18 8.07 18.29 15.92 25.34 20.76 0.68 0.72 1.46 1.50 2.19 2.26 25.00 15.98 37.74 41.75 59.79 47.14
5 7.04 7.58 13.11 16.53 27.66 22.89 1.14 1.23 2.64 2.27 3.44 3.98 18.00 14.40 23.80 44.36 41.62 43.45
6 8.32 9.79 16.80 14.74 26.55 26.82 1.00 0.96 2.49 1.97 3.36 2.95 26.00 10.28 40.45 30.69 23.84 67.64
7 8.02 8.30 14.46 15.42 25.74 23.10 1.22 1.20 2.29 2.39 3.18 3.29 28.00 19.68 40.57 50.66 61.05 72.99
8 6.36 8.24 18.23 17.48 20.24 28.28 0.73 0.86 1.43 2.13 2.11 2.18 12.00 26.70 31.01 32.74 82.76 66.55
9 5.93 8.65 16.51 13.43 22.36 19.92 1.12 0.91 1.92 1.77 2.52 2.98 17.00 19.78 49.92 28.39 56.18 52.64

10 8.56 8.88 17.57 19.17 25.73 23.20 0.80 0.75 1.45 1.62 2.36 2.40 21.00 28.16 39.08 47.59 71.62 83.71
11 7.61 9.85 17.34 16.31 27.06 28.60 0.92 1.23 2.55 2.54 3.95 3.47 20.00 16.24 43.19 28.68 60.13 70.66
12 7.88 8.07 16.89 12.55 22.98 24.26 1.08 1.05 2.28 2.22 3.32 3.23 18.00 11.38 46.14 22.51 66.97 65.73
13 8.73 6.82 18.22 15.64 25.64 20.26 0.95 0.99 2.00 2.00 2.94 2.93 26.00 22.32 64.67 40.40 94.98 58.26
14 7.97 9.72 16.72 11.98 23.27 23.10 1.17 1.14 1.95 2.35 3.91 3.58 16.00 23.16 24.82 44.13 51.38 63.52
15 9.16 8.77 16.72 15.86 24.97 30.30 0.85 0.79 1.42 1.75 2.33 2.34 14.00 12.88 40.57 33.27 33.99 60.82
16 9.32 8.71 14.86 15.67 21.87 28.43 1.05 1.10 2.01 2.26 3.29 3.02 22.00 15.90 51.58 43.90 75.55 86.65
17 8.32 6.91 16.03 14.10 22.70 18.87 0.80 0.85 2.07 1.99 2.71 2.46 23.00 20.34 42.91 32.95 36.92 64.79
18 8.71 6.37 14.87 18.74 31.61 22.69 1.14 0.98 1.92 1.58 3.57 2.97 19.00 12.43 37.70 38.89 69.16 55.98

 
 

Table 3.  The desirability and OPI values of each experimental run 
Repetition 1 Repetition 2 

No 
d1 d2 d3 OPI d1 d2 d3 OPI 

1 0.58906 0.81952 0.57009 0.65046 0.62359 0.66263 0.45885 0.57448 
2 0.64317 0.84377 0.51048 0.65189 0.64706 0.74630 0.58719 0.65697 
3 0.62157 0.89360 0.52067 *0.66130 0.59595 0.88902 0.45263 0.62128 
4 0.63509 0.50981 0.46788 0.53308 0.57565 0.54565 0.53482 0.55177 
5 0.57266 0.59345 0.59386 0.58657 0.58714 0.55928 0.54449 0.56336 
6 0.63104 0.72461 0.52471 0.62138 0.64162 0.94303 0.56356 *0.69863 
7 0.59480 0.68663 0.44171 0.56504 0.59222 0.65105 0.43802 0.55275 
8 0.55939 0.51424 0.51899 0.53049 0.64765 0.70085 0.45986 0.59320 
9 0.54611 0.79392 0.48555 0.59488 0.55448 0.82584 0.54153 0.62825 

10 0.63808 0.58608 0.46448 0.55796 0.64356 0.60964 0.38647 0.53325 
11 0.62556 0.56832 0.48008 0.55470 0.66927 0.56960 0.52495 0.58492 
12 0.59812 0.74750 0.47016 0.59458 0.56411 0.80416 0.58843 0.64387 
13 0.64726 0.94940 0.34253 0.59485 0.54048 0.98410 0.47836 0.63366 
14 0.60029 0.65608 0.58152 0.61182 0.58573 0.64606 0.45363 0.55576 
15 0.63652 0.59880 0.58098 0.60499 0.65528 0.65523 0.55282 0.61916 
16 0.59930 0.86430 0.41948 0.60118 0.64007 0.80056 0.45183 0.61404 
17 0.59634 0.78306 0.50878 0.61935 0.51368 0.78506 0.49888 0.58596 
18 0.65299 0.72485 0.48430 0.61201 0.58340 0.81089 0.54793 0.63760 
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Table 4. The candidate network structures 
RMSE Structure Training Testing 

7-10-3 0.0484 0.0796 
7-11-3 0.0478 0.0801 
7-12-3 0.0489 0.0785 
7-13-3 0.0464 0.0777 
*7-14-3 0.0479 0.0776 
7-15-3 0.0458 0.0794 
7-16-3 0.0444 0.0867 
7-17-3 0.0443 0.0812 
7-18-3 0.0468 0.0805 
7-19-3 0.0459 0.0811 
Note: Learning rate is set as between 0.01 and 
0.3; momentum coefficient is 0.80; number of 
iterations is 10,000. 

 
 
4.3  Performing the GA 

In this stage, a GA is performed to obtain the 
optimal OPI value within the feasible solution 
space of the system.  The values of the six 
control factors are set as continuous and fall in the 

range between 1 and 3.  The operational 
conditions of the GA are set as: (number of 
generation maxt : 3000), (population size l: 80), 

(crossover rate Pc: 0.80), and (mutation rate MP : 
0.085).  The GA program is executed over 20 
runs to obtain the optimal OPI value 0.753553 and 
the corresponding values of factor combination.  
Through the response function model, the 
predicted responses at the optimal values of factor 
combination can be obtained.  Table 5 lists the 
predicted responses at the optimal values of factor 
combination.  Table 6 lists the optimal OPI value 
and the corresponding values of factor 
combination.  For the purpose of benchmarking, 
this study conducted a comparison between full 
factor/level combinations and the proposed 
approach.  Table 6 also lists the best OPI value 
0.745636 of full factor/level combinations.  It is 
worthy to notice that the obtained factor values of 
the best combinations are restricted to the 
experimental levels while using full factor/level 
combinations to resolve parameter design.  Table 
6 reveals the proposed approach outperforms the 
traditional experimental design in terms of the OPI 
value. 

 
 

Table 5.  The predicted responses at the optimal values of factor combination 
Responses  y1 y2 y3 

Signal values  0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3 
Predicted 

multiresponse 11.51 19.89 26.85 1.18 1.99 2.95 5.22 17.38 47.08

d value 0.719104 0.846602 0.702863 
 

Table 6.  The optimal values of factor combination 
optimal values Method 

A B C D E F 
OPI value 

Full combinations 2 3 3 1 2 1 0.745636 
Proposed approach 1.85 2.99 2.97 1.00 1.86 1.00 0.753553 

 
 
5  Discussion and Conclusion 

 
Parameter design is a critical phase in 

developing new products because it mostly 
determines the total production cost and quality.  
However, parameter design problems are 
complicated because nonlinear relationships and 
interactions may occur among parameter, 
particularly in multiresponse which have different 

goals.  A hybrid approach that incorporates 
exponential desirability functions into a 
neuron-genetic technique is proposed to optimize 
dynamic multiresponse systems and has been 
demonstrated with an illustrative example.  
Using the proposed response modeling approach, 
we expand the feasible combination space to 
infinity, unlike the traditional experimental design 
that can only find the best one from full 
combinations of experimental factor/level.  For 
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the illustrative example, the best combination will 
be selected from the 63 729�  combinations if a 
traditional experimental design is employed.  By 
using the proposed approach, the obtained 
combination is formed by any values within the 
control factors’ upper and lower bounds.  Since 
the proposed approach can get much more feasible 
combination space than the traditional 
experimental design, it increases the probability of 
obtaining the optimal combination.  Furthermore, 
the proposed approach unlike Taguchi method 
dose not use adjustment factors to optimize 
parameter design, which cannot be guaranteed to 
exist in practice.  Also, the results of analysis 
reveal that by applying the approach the obtained 
factor values of optimal parameter settings are not 
limited to the discrete values of the experimental 
levels, and have higher performance than the full 
combination does in terms of the OPI value.  The 
proposed approach provides a generalized solution 
for parameter design and can be applied to diverse 
industrial fields.  Moreover, through appropriate 
modification, the approach can be reduced to deal 
with most of the situations that practitioners may 
encounter, including static multiresponse, simple 
dynamic systems, and general static problems. 
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